Note
Go to the end to download the full example code.
Robust Proton Plan Optimization#
author: OpenTPS team
In this example, we create and optimize a robust proton plan. The setup and range errors are configurable.
running time: ~ 20 minutes
Setting up the environment in google collab#
import sys
if "google.colab" in sys.modules:
from IPython import get_ipython
get_ipython().system('git clone https://gitlab.com/openmcsquare/opentps.git')
get_ipython().system('pip install ./opentps')
get_ipython().system('pip install scipy==1.10.1')
import opentps
imports
import os
import logging
import numpy as np
from matplotlib import pyplot as plt
import sys
sys.path.append('..')
import the needed opentps.core packages
from opentps.core.data.images import CTImage
from opentps.core.data.images import ROIMask
from opentps.core.data.plan._protonPlanDesign import ProtonPlanDesign
from opentps.core.data.plan import RobustnessProton
from opentps.core.data import DVH
from opentps.core.data import Patient
from opentps.core.data.plan import FidObjective
from opentps.core.io import mcsquareIO
from opentps.core.io.scannerReader import readScanner
from opentps.core.io.serializedObjectIO import loadRTPlan, saveRTPlan
from opentps.core.processing.doseCalculation.doseCalculationConfig import DoseCalculationConfig
from opentps.core.processing.doseCalculation.protons.mcsquareDoseCalculator import MCsquareDoseCalculator
from opentps.core.processing.imageProcessing.resampler3D import resampleImage3DOnImage3D
from opentps.core.processing.planOptimization.planOptimization import IntensityModulationOptimizer
logger = logging.getLogger(__name__)
Output path#
output_path = os.path.join(os.getcwd(), 'Proton_Robust_Output_Example')
if not os.path.exists(output_path):
os.makedirs(output_path)
logger.info('Files will be stored in {}'.format(output_path))
CT calibration and BDL#
ctCalibration = readScanner(DoseCalculationConfig().scannerFolder)
bdl = mcsquareIO.readBDL(DoseCalculationConfig().bdlFile)
Create synthetic CT and ROI#
patient = Patient()
patient.name = 'Patient'
ctSize = 150
ct = CTImage()
ct.name = 'CT'
ct.patient = patient
huAir = -1024.
huWater = ctCalibration.convertRSP2HU(1.)
data = huAir * np.ones((ctSize, ctSize, ctSize))
data[:, 50:, :] = huWater
ct.imageArray = data
roi = ROIMask()
roi.patient = patient
roi.name = 'TV'
roi.color = (255, 0, 0) # red
data = np.zeros((ctSize, ctSize, ctSize)).astype(bool)
data[100:120, 100:120, 100:120] = True
roi.imageArray = data
Design plan#
beamNames = ["Beam1"]
gantryAngles = [0.]
couchAngles = [0.]
Create output folder#
if not os.path.isdir(output_path):
os.mkdir(output_path)
Configure MCsquare#
mc2 = MCsquareDoseCalculator()
mc2.beamModel = bdl
mc2.nbPrimaries = 1e3
mc2.ctCalibration = ctCalibration
Load / Generate new plan#
plan_file = os.path.join(output_path, "RobustPlan_notCropped.tps")
if os.path.isfile(plan_file):
plan = loadRTPlan(plan_file)
logger.info('Plan loaded')
else:
planDesign = ProtonPlanDesign()
planDesign.ct = ct
planDesign.gantryAngles = gantryAngles
planDesign.beamNames = beamNames
planDesign.couchAngles = couchAngles
planDesign.calibration = ctCalibration
# Robustness settings
planDesign.robustness = RobustnessProton()
planDesign.robustness.setupSystematicError = [1.6, 1.6, 1.6] # mm
planDesign.robustness.setupRandomError = [0.0, 0.0, 0.0] # mm (sigma)
planDesign.robustness.rangeSystematicError = 5.0 # %
# Regular scenario sampling
planDesign.robustness.selectionStrategy = planDesign.robustness.Strategies.REDUCED_SET
# All scenarios (includes diagonals on sphere)
# planDesign.robustness.selectionStrategy = planDesign.robustness.Strategies.ALL
# Random scenario sampling
# planDesign.robustness.selectionStrategy = planDesign.robustness.Strategies.RANDOM
planDesign.robustness.numScenarios = 5 # specify how many random scenarios to simulate, default = 100
planDesign.spotSpacing = 7.0
planDesign.layerSpacing = 6.0
planDesign.targetMargin = max(planDesign.spotSpacing, planDesign.layerSpacing) + max(planDesign.robustness.setupSystematicError)
# scoringGridSize = [int(math.floor(i / j * k)) for i, j, k in zip(ct.gridSize, scoringSpacing, ct.spacing)]
# planDesign.objectives.setScoringParameters(ct, scoringGridSize, scoringSpacing)
planDesign.defineTargetMaskAndPrescription(target = roi, targetPrescription = 20.) # needs to be called prior spot placement
plan = planDesign.buildPlan() # Spot placement
plan.PlanName = "RobustPlan"
nominal, scenarios = mc2.computeRobustScenarioBeamlets(ct, plan, roi=[roi], storePath=output_path)
plan.planDesign.beamlets = nominal
plan.planDesign.robustness.scenarios = scenarios
plan.planDesign.robustness.numScenarios = len(scenarios)
#saveRTPlan(plan, plan_file)
saveRTPlan(plan, plan_file)
Set objectives (attribut is already initialized in planDesign object)#
plan.planDesign.objectives.addFidObjective(roi, FidObjective.Metrics.DMAX, 20.0, 1.0, robust=True)
plan.planDesign.objectives.addFidObjective(roi, FidObjective.Metrics.DMIN, 20.5, 1.0, robust=True)
solver = IntensityModulationOptimizer(method='Scipy_L-BFGS-B', plan=plan, maxiter=50)
Optimize treatment plan#
doseImage, ps = solver.optimize()
plan_file = os.path.join(output_path, "Plan_Proton_WaterPhantom_cropped_optimized.tps")
saveRTPlan(plan, plan_file, unloadBeamlets=False)
Compute DVH#
target_DVH = DVH(roi, doseImage)
print('D95 = ' + str(target_DVH.D95) + ' Gy')
print('D5 = ' + str(target_DVH.D5) + ' Gy')
print('D5 - D95 = {} Gy'.format(target_DVH.D5 - target_DVH.D95))
D95 = 15.656738281249996 Gy
D5 = 24.287923177083336 Gy
D5 - D95 = 8.63118489583334 Gy
Center of mass#
roi = resampleImage3DOnImage3D(roi, ct)
COM_coord = roi.centerOfMass
COM_index = roi.getVoxelIndexFromPosition(COM_coord)
Z_coord = COM_index[2]
img_ct = ct.imageArray[:, :, Z_coord].transpose(1, 0)
contourTargetMask = roi.getBinaryContourMask()
img_mask = contourTargetMask.imageArray[:, :, Z_coord].transpose(1, 0)
img_dose = resampleImage3DOnImage3D(doseImage, ct)
img_dose = img_dose.imageArray[:, :, Z_coord].transpose(1, 0)
Display dose#
fig, ax = plt.subplots(1, 2, figsize=(12, 5))
ax[0].axes.get_xaxis().set_visible(False)
ax[0].axes.get_yaxis().set_visible(False)
ax[0].imshow(img_ct, cmap='gray')
ax[0].imshow(img_mask, alpha=.2, cmap='binary') # PTV
dose = ax[0].imshow(img_dose, cmap='jet', alpha=.2)
plt.colorbar(dose, ax=ax[0])
ax[1].plot(target_DVH.histogram[0], target_DVH.histogram[1], label=target_DVH.name)
ax[1].set_xlabel("Dose (Gy)")
ax[1].set_ylabel("Volume (%)")
plt.grid(True)
plt.legend()
plt.savefig(os.path.join(output_path, 'Dose_RobustOptimizationProtons.png'))
plt.show()

Total running time of the script: (4 minutes 51.932 seconds)